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Minimizing thermodynamic length to select intermediate states
for free-energy calculations and replica-exchange simulations
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In computational thermodynamics, a sequence of intermediate states is commonly introduced to connect two
equilibrium states. We consider two cases where the choice of intermediate states is particularly important:
minimizing statistical error in free-energy difference calculations and maximizing average acceptance prob-
abilities in replica-exchange simulations. We derive bounds for these quantities in terms of the thermodynamic
distance between the intermediates, and show that in both cases the intermediates should be chosen as equi-
distant points along a geodesic connecting the end states.
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I. INTRODUCTION

Many computational thermodynamics applications in-
volve the sampling of each of a sequence of ensembles lying
between two equilibrium states. The choice of intermediate
states can greatly affect the precision to which certain quan-
tities can be derived from experimental measurements or
computer simulations. In this work, we present results on
how the intermediate states should be chosen in order to
minimize the variance of computed free-energy differences
(AF) and to (nearly) maximize average acceptance probabili-
ties in replica-exchange (RE) simulations.

Estimation of AF between two equilibrium states is an
important problem with many applications, including the
prediction of binding affinities of pharmaceutical compounds
[1]. The Bennett acceptance ratio method provides an
asymptotically efficient estimator for AF that uses equilib-
rium samples at the two states [2,3], but converges slowly
unless the two states overlap significantly in phase space.
The same problem applies to other free-energy perturbation
methods, thermodynamic integration techniques, and various
other approaches to the estimation of free-energy differences.
It is thus common to introduce a sequence of intermediate
states in which adjacent states overlap extensively and thus
have a small variance in their estimated AF. The intermedi-
ates should be chosen to minimize the total variance. Previ-
ous studies have suggested choosing intermediates so that
the free-energy difference [4] or the entropy difference [5]
between any two adjacent states is approximately equal;
other heuristics have been proposed as well [6,7]. In general,
however, these choices do not minimize the total variance.
To obtain well-converged estimate of AF in practice, the
intermediates are often determined by trial and error.

The choice of intermediate states is also important in RE
simulations. RE enhances sampling by coupling the refer-
ence system to an “efficient sampler” [8], a replica of the
system in a state where the sampling of the phase space is
efficient, such as a state of high temperature (“temperature
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exchange”) or a state where specific energy barriers are at-
tenuated [9-12]. To allow more frequent exchanges between
the efficient sampler and the reference system, intermediate
replicas are introduced, with exchanges performed between
adjacent replicas; we call such a sequence of replicas an RE
schedule. For any given number of replicas, we wish to
choose an RE schedule that maximizes the frequency of ex-
change between fixed end states. Extensive literature has
been dedicated to the selection of intermediates in tempera-
ture exchange [13-17], but little is known in more general
cases [18].

Suppose that each state of the system is characterized by a
vector \. The state of a gas, for example, might be repre-
sented by vector N\=(T, P), where the coordinate T specifies
the temperature of the system and the coordinate P specifies
its pressure. In a computer simulation, the coordinates might
include parameters of the Hamiltonian. Selecting the inter-
mediate states involves two steps: choosing a path in coordi-
nate space and assigning the intermediates to specific points
along this path.

In this work we analyze the choice of intermediates using
methods from information geometry. Prior work has de-
scribed a Riemannian metric on the space of coordinates A\,
called the Fisher information metric or thermodynamic met-
ric, as described below. The associated Riemannian length is
called the thermodynamic length [19]. It has been shown that
the dissipation in a transition between two end states is mini-
mized when following a geodesic—i.e., a path of minimal
thermodynamic length—between them [20,21]. We show
here that geodesics also play an important role in selecting
the intermediate states used in free-energy calculations and
RE simulations: the choice of equidistant intermediates along
the geodesic connecting the end states both minimizes the
variance in the calculated free energy (Theorem 1) and pro-
vides an “almost optimal” RE schedule (Theorem 2).

II. PRELIMINARIES AND NOTATION

Suppose that the equilibrium states are determined by a
vector A\=(\!, ... ,\9), taking values in a convex set D C R%
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mann constant and 7 is the temperature. The equilibrium
probability density at a point x in phase space is py(x)
=Zy exp[—hy (x)], where Z, = [e @y is the partition func-
tion. Let fy=—In Z, be the free energy multiplied by 3, and
£, (x)=In p,(x)=f\—h,(x) be the log probability. In this no-
tation, 8 may be a component of \. We will refer to £ as the
Hamiltonian and to f as the free energy of the system. We
denote differentiation with respect to A’ by ¢;, and second
derivatives by d;;. We assume throughout that we can differ-
entiate with respect to \' under the integral sign.
The Fisher information matrix g at \ is defined by

g(N);; = covy(9,4),9;€)) = (Fi€)(x) - I\ (), (1)

where angled brackets denote expectation with respect to py
(the second equality follows because (d;¢)(x)),=0). Under a
few mild regularity conditions ([22], 2.1), g is a well-defined
positive-definite quadratic form varying smoothly with \, en-
dowing D with a Riemannian metric, called the Fisher infor-
mation metric. The norm induced by g at A € D is denoted
[|-/[x- The Riemannian length of a path () in D (0=t=1) is

1 1
L(y)= At = Ve(y),Vdt, 2
() ﬁjﬁﬂrj;J%yﬂﬁmr (2)

where y=dvy/dt. The Riemannian distance between A, and
\, is defined as the length of the connecting geodesic, and is
denoted £(\,,\).

The thermodynamic metric is closely related to the ther-
mal fluctuations. This is most apparent when £, is linear in
N, ie., hy(x)=2\X;(x), where X; are functions of the mi-
crostate x alone. In this case we say that the system is in
Gibbs ensemble, and we have

g(N);j == f(N) = cov\(X;, X)), (3)

emphasizing the connection between the metric and fluctua-
tions. We define the energy coordinates by U;(N)=d,fy
=(X;)\; in the coordinates U, the metric is given by g(U)
=g\~ ([22], 3.4, 4.1).

As an example, consider n molecules of ideal gas in the
isothermal-isobaric ensemble. Here, & is given by the en-
thalpy multiplied by B: h(x)=BE(x)+BPV(x), so the system
is in Gibbs ensemble with respect to the coordinates (3, BP).
The metric in these coordinates is

var(E) 0 C Vkl_;l 0 )

_ _ 2
8(B.BP) = ( 0 var(V) ) =F ( 0 nkP!

(4)

where Cy, is the heat capacity and « is the isothermal com-
pressibility. Geodesics for an ideal gas are illustrated in Fig.
1. The connection between the thermodynamic length and
fluctuations is intuitive in the energy coordinates, where the
metric is g((E),(V)):g(,B,,BP)‘l=((V)arv(i)(; %), The distance
between two states differing in energy by cf(E} and in volume
by d(V) is dL=[d(E)*/var(E)+d{V)*/var(V)]"?; the states
are close if the fluctuations in energy and volume are large
compared to the difference in their equilibrium values.
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FIG. 1. Left: geodesics for an ideal gas in the (8, 8P) coordi-
nates. Right: in the [In B8,In(BP)] coordinates, the metric is
g(n B,ln(ﬁP)):diag(CVkl;l,n), and the geodesics are Euclidean
straight lines. Quasistatic adiabatic expansions of an ideal gas fol-
low geodesics (thick lines). Equidistant points on the geodesics are
shown as circles.

III. MINIMIZING VARIANCE IN FREE-ENERGY
CALCULATIONS

We study the estimation of the free-energy difference Af
between two states \,,\, € D, based on samples drawn from
a sequence of intermediate states, Ay,\{,...,N;, Where A\,
=\, and N\ =N\,

Theorem 1. Let Af be an unbiased estimator for Af based
on a total of N observations. Then in the limit where the
intermediates \; are close,

This bound can be achieved asymptotically as N— by
choosing the \; along the geodesic connecting A, and \,.

Our argument will also show that to minimize the vari-
ance, the amount of sampling for the estimation of Af;
=f\,,,~/, should be proportional to £(\;,\;, ;). In particular,
when sampling equally at each \;, the intermediates should
be equidistant.

We first prove the theorem for a special case, which high-
lights that the thermodynamic length represents an inherent
information-theoretical bound on the variance of a free-
energy estimator. Suppose that the system is in Gibbs en-

semble and Af‘(x) is any unbiased estimator for Af given an
observation x drawn from \,. Let

on =S fum 2 aflas (V=N (5)

Then we obtain an estimator for ¢,, namely: g”oh(x)zAf‘(x)

—3.0.f|,- AN, whose variance is the same as that of A f Con-
versely, any unbiased estimator for ¢, gives rise to an unbi-
ased estimator for Af with the same variance. Note that
|y =0if = dif .= AU;.

By the Cramér-Rao lower bound [22], using g(U)
=g(N\)™" and the invariance of the norm under coordinate
transformations, we have
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var(Af) = var(¢y) = 2 diel(s00) el
i.j
2

=2 AUg(U),AU; =AUl = [ANS . (6)

ij
Suppose now that we allow sampling at multiple interme-
diates and draw n; observations at each \;. By Eq. (6), the
variance for the estimation of Af; is bounded by ||AN]f; /7.
Minimizing subject to the constraint that N =Ef=]ni is a con-
stant, we obtain that ; should be proportional to ANy . In
this case, assuming independent sampling at the various A\,

we have the bound

(Sdand )?

N (7)

Var(Af‘) = E Vaf(Afi) =

This bound is rigorous. If the \; are close enough and
situated along a path , we obtain in the limit k— o

2
Var(Af) = £ .

(8)

Equality can be achieved asymptotically as N—, e.g., by
using a maximum-likelihood estimator (the needed regularity
conditions hold by our hypotheses on g [22]). The variance is
minimized when vy is a geodesic.

We now turn to the general case, where the system is not
necessarily in Gibbs ensemble. Consider the estimation of Af
without intermediates, based on a maximum-likelihood esti-
mator given N samples. We assume for simplicity a sampling
protocol where the two states are sampled equally; similar
results hold for different ratios as well. The Cramér-Rao
lower bound gives again an estimate for the variance [3],

N -var(Af) = 2((1 + cosh A€)™)' —4 =~ 4(1 - A2¢/4)' — 4

~(A%¢), &)
where the average is taken over all samples; the approxima-
tions are obtained by expanding to second order in A€. In the
limit of many samples, it follows from the protocol that
(A%€)— ((A€),+(A%(),)/2. Expanding in A\, the first-order
term of (A€), vanishes, so up to second order,

(A20), = var(AL), = || AN, (10)

where the second approximation follows directly from the
definition of the metric. Combining this result with its coun-
terpart for (A2€), in Eq. (9) we finally obtain

JANIE + AN

N- vaI(Af) ~ 5

(11)
This approximation becomes arbitrarily good as AN van-

ishes. The theorem now follows in the same way as it does
from Eq. (6).

IV. MAXIMIZING THE TOTAL ACCEPTANCE IN RE
SIMULATIONS

Let p,,p, be the distributions defined by two replicas
whose Hamiltonians are parametrized by A,,\,. The Me-
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tropolis acceptance probability for the exchange attempt
(x,y)— (y,x) is min(1 Pa)Pp)

*p (x),,,(y)), so the average acceptance
probability is

ANg\,) = j f min(p,(x)p,(y),p.(y)py(x))dxdy.
xJy

(12)

Given a sequence of replicas along a path 1y, \g
=N Ny .o M=\, we define the toral acceptance by
A(y)=IT,A\;, N\, ). This is the probability that a state will
propagate from A\ to N, in k consecutive attempts. A(y) is
not by itself an optimal measure for the efficiency of an RE
schedule, as it does not take into account the number of
replicas and the sampling quality. Other measures, such as
the flux, the effective fraction, and the round-trip time
[16,17,23], are more suitable for this end. Nevertheless,
given k, maximizing A(7y) is equivalent to optimizing these
other measures. We note that the sampling efficiency of RE
is only accurately reflected by the above measures under the
assumption that at least one replica is a perfect sampler [17].

Theorem 2. The total acceptance A(7y) is maximized when
the \; are equidistant, and we have the bounds

L(y)  L(y) L3(y)
" T ShAm=-

Once again, the bounds are maximized when 7 is a geo-
desic. Even though sampling along a geodesic may not guar-
antee an optimal total acceptance, any other schedule cannot
improve on it by a factor of more than exp(L(\,,\,)/\2).

For the proof, we examine the overlap integrals

Jq()\a,hb)EJZ‘”‘I(P%PZ)”W (g=0). (13)

J, is nondecreasing in g. We shall use the case g=—1 and the
limiting case g — —o, given explicitly by

2
Joy = f e J min(p,,py)dx.  (14)
Pat Py

Using Jensen’s inequality twice, we have:

In J_,. = In{min(1,e%)), = (min(0,A€)), = %(A€)a

1 1 1
- {1ath, = (a0, - oa0),. (15)

where o(Af) is the standard deviation; by Eq. (10), o(A€),
~||AN]|,. Up to second order, (A€),~—||AN]|*/2, as can be
seen by noting that (Af), is the negative of the Kullback-
Leibler divergence from p, to p;, ([22], 3.5). It follows that
for A,,\, close enough,

JANG AN,
4 2

InJ_.=-

(16)

For J_;, we write In J_;=In(2/ (1 +¢2%)),, expand to sec-
ond order and use our previous approximations,
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_ (A0, (A6 AN

In J_]
2 8 4

(17)

Putting everything together, we obtain for A,,\, close
enough and L=L(\,,\;),
L C L£?
-————=InJ,=<hJ ,=-—. (18)
4 2 4
To make connection to the average acceptance probability
A(Ng,\p), note that we may regard D X D as a manifold of
distributions, where (\,,\;) corresponds to the product den-

sity p,(x)p,(y). Defining J, on this manifold as before, it is
clear from the definition (12) that

A()\a?)\b) =J—oo(()\a7)\b)’()\b7)\a))~ (19)

The independence of p,(x) and p,(y) implies that the Fisher

metric on DX D is simply the product metric, given by

gN,N\p) :(ﬁo;‘&g). If y is a geodesic in D X D, then by mini-

mality the projections on each factor, y,, y,, are geodesics in
D. It can be shown further that LDXD(7)=(£D(71)2
+Lp(y,)%)"2. It follows that

Lon((NaN) N he)) = 2L5(00 Ny
Using Eq. (18) we obtain for £L=Lp(N,,\;),

[:2 2

_?_ﬁsm A()\a,)\b)s—?. (20)

The proof of theorem 2 now follows by applying these
bounds to all acceptances A(\;,\;;;) and maximizing the
resultant bounds of A(+y) subject to the constraint that the
length of 7y is constant.
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As an example, consider temperature exchange. The
Hamiltonian depends linearly on a single parameter, the in-
verse temperature (3. The metric in the coordinate In B is
g(In B)=Cy(B)k;', where Cy(B) is the heat capacity. If
Cy(B) is constant, L(B;,B,) is proportional to |In 3,
—In B|. Hence, in order to obtain equidistant replicas, the
temperatures should form a geometric progression, in accor-
dance with previous results [13,14].

V. CONCLUSION

Previous studies have demonstrated examples in which
well-chosen intermediates significantly improve the conver-
gence of the estimated AF [5] and the RE sampling effi-
ciency [15]. The present work shows how to select a nearly
optimal set of intermediates in the general cases. We have
shown that in the limit of a large number of intermediate
states, choosing equidistant intermediates along the geodesic
both minimizes the total variance in the estimate of AF and
guarantees that the total acceptance probability in RE simu-
lations differs by no more than a system-dependent constant
factor from the optimum. We suggest the following method
to obtain such intermediates. First, conduct short simulations
on a lattice in coordinate space and estimate the thermody-
namic metric at each lattice point. After refining the lattice as
needed, construct the shortest path between the end states
using the metric estimates and select equidistant points along
it as the intermediate states. Further development of efficient
methods to estimate the thermodynamic metric will be of
interest for purposes of determining accurate geodesics.
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